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ABSTRACT 
 

It has been revealed that higher moments of parent distributions influence the tail characteristics of 
annual maximum wind speed distribution. Some studies have been conducted to show that once the 
standard deviations of skewness and kurtosis of yearly variation for the 10 minute mean wind speeds are 
properly estimated, a good probability model for the annual maxima can be obtained. However since the 
parameters for four moments have various effects on the location and scale parameters of estimated 
Gumbel distribution for annual maxima, it is interesting to see more general relationship between those 
parameters of parent distributions and the location and scale parameters of Gumbel models. This paper 
aims at examining the characteristics of the moment parameters and their effects on the Gumbel models. 
Once the relation between the moment parameters and approximate annual maximum statistics is known, 
even a short period statistics such as 5 years or 10 years may help to have an approximate estimation of 
annual maximum. It is expected that such examinations of probabilistic characteristics of 10 minute mean 
wind speeds may provide good information for wind hazard models for individual sites.  

 
NOMENCLATURE 
 
  : Mean  

  : Standard deviation 

1  : Skewness 

2  : Unbiased kurtosis 

  : Shape parameter 

s  : Scale parameter 

l  : Location parameter 

F  : Cumulative probability function 

 
1. INTRODUCTION 
 
In order to determine an appropriate design wind 
speed for structures, it is essential and important to 
estimate the probability distribution of annual 
maximum wind speeds. Gumbel model is often 
considered as a typical probability model for the 
distribution of annual maximum wind speeds in 
many loading standards. However, Frechet model 
may be preferred when the observed data includes 
some extreme phenomena, such as typhoons or 
hurricanes.  
 
The maximum value of 10 minute mean wind 
speed is only one value among 52,560 samples in 
one year. However, it seems reasonable to assume 
that the statistical nature of 10 minute mean wind 
speeds, such as four moments, provide sufficient 
information corresponding to the characteristics of 
annual maximum extremes. When a sufficient 

number of data is available, the statistics of 
extremes may provide good models by simply 
applying the extreme value distribution theory. 
However, it has been reported that the four 
moments of parent distribution vary to suggest the 
non-identical nature and that the coefficients of 
variations of the third and fourth moments 
significantly contribute to the tail characteristics of 
annual maximum distribution [7]. 
 
In this paper, data of 10 minute mean wind speeds 
of every 3 hours for 155 meteorological sites are 
first utilized to identify the types of extreme value 
distribution models. A error between the fitting 
curve by Gumbel model and that by Frechet model 
(or Weibull model) is assumed to categorize the 
Gumbel model and the other two models. Then 
based on examining the shape parameter, Frechet 
or Weibull model can be determined. 
Categorization statistics are then obtained. And 
then correlations of yearly variations of four 
moments are examined. Regional variations of 
moment parameters are assumed by a parametrical 
study to investigate the effect of moment 
parameters on the tail characteristics of extreme 
value distributions. The polynomial translation 
method is applied to generate estimation of annual 
maximum wind speeds through the variation of 
moment parameters. Finally, the statistical data of 
155 meteorological sites are utilized to simulate 
the annual maximum wind speeds. Statistical data 
of 5-year period is also utilized to estimate the 
annual maximum wind speed distribution.  



 
2. IDENTIFICATION OF ANNUAL 
MAXIMUM WIND SPEEDS FOR 155 SITES 
 
Generalized extreme value distribution model has 
been commonly used. The tail characteristics can 
be identified easily by fitting the shape parameter 
of the generalized model shown in Equation (1). 
That is, if the shape parameter approaches zero the 
distribution is considered Gumbel type; if it is 
identified positive, the distribution is considered 
Frechet type; if it is identified negative, Weibull 
model is preferred. However, when the shape 
parameter is very small, Gumbel type will be less 
different from the Weibull type. The same 
condition can also be observed for those Frechet 
models with very small parameters.  
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E  : Fitting error 

n  : Number of observed years 

ix  : i-th observed value at reduced variate iy

iGx ,  : i-th value of generalized model at iy  

iy  : i-th reduced variate on the Gumbel 
probability plot 

 
To distinguish the types of extreme value 
distribution models, the error between models may 
be used. When the error between the fitting curve 
by Gumbel model and that by the Frechet model 
(or the Weibull) is smaller than 0.05, which 
represents an acceptable error defined by Equation 
(2), then the observed data may be considered as a 
Gumbel model. However, if the error is larger than 
0.05 and the shape parameter fitted is positive, 
Frechet model may give a better fitness; if the 
error is larger than 0.05 and shape parameter is 
negative then Weibull model. By utilizing 155 
meteorological sites in Japan, 155 errors between 
the fitting curve by Gumbel model and the curve 
by the Frechet or Weibull model are calculated by 
Equation (2). Among these 155 sites, there are 122 
sites with an error smaller than 0.05 and 
considered as Gumbel model. 29 sites are regarded 
as Frechet model and 4 sites as Weibull model. If 

the errors between the observed data and the 
fitting curves are further examined and the value 
of 0.05 once again is considered as a criteria to 
distinguish a good fitness and a bad fitness, then 
there are 9 bad fitness for 122 sites of Gumbel 
model, 18 bad fitness for 29 sites of Frechet model 
and 2 bad fitness for 4 sites of Weibull model. 
Table 1 shows the results of categorization.  
 

Table 1 Statistics of type categorization 
 

 Gumbel Frechet Weibull 
Counts 122 29 4 
Good fitness (E < 0.05): 126 
Bad fitness (E ≧ 0.05): 29 

 
Figure 1 shows some sites with different 
categorizations. The fitting results of these sites 
were also shown by Fujino [1]. Fukuoka and 
Sumoto were categorized as Gumbel model in 
Reference [1]. However Sumoto is more like 
Frechet model in Figure 1(b). Matsumoto and 
Nagoya were considered as Frechet model in 
Reference [1] but Matsumoto is more like Gumbel 
model in Figure 1(c). Meanwhile, Aikawa and 
Sapporo are regarded as Gumbel model rather than 
Weibull model in Reference [1]. Such different 
fitting results also show in other sites.  
 
The reason for the different fitting results may be 
the different observed period of time. In this paper, 
the observed period of statistical data of 155 sites 
is from 1961 to 2002 however the observed period 
in Reference [1] was from 1929 to 1977 or 1939 to 
1977. The overlapping period is so short that it is 
hard to say the fitting results should be the same. 
 
Some sites, Nagoshi and Okinoerabujima in 
Figure 2, are performed as Weibull model. 
However such sites of Weibull model are seldom 
occur. Fujino [1] proposed that since the error 
between the Gumbel and the Weibull model is 
very small, it might be suitable to categorized 
Weibull model as Gumbel model for simplicity.      
 



   
(a) Fukuoka                           (b) Sumoto 

 

   
(c) Matsumoto                          (d) Nagoya 

 

   
(e) Aikawa                               (f) Sapporo 

 
Figure 1 Fitting results for Fukuoka, Sumoto, Matsumoto, 

Nagoya, Aikawa, and Sapporo 
 

  
(a) Nagoshi                       (b) Okinoerabujima 

 
Figure 2 Fitting results for Nagoshi and Okinoerabujima 

 
3. CHARACTERISTICS OF FOUR 
MOMENTS OF PARAENT DISTRIBUTION 
 
3.1 Yearly variations of four moments 
 
The distributions of four moments were examined. 
In all 155 sites, 10 minute mean wind speeds of 
every 3 hour data from 1961 to 2002 are utilized. 
From the yearly variation of four moments in each 

site, the correlation coefficients between four 
moments are calculated. Table 2 shows the mean 
and standard deviation value of the correlation 
coefficient values of four moments for 155 sites. 
Table 2 indicates a high correlation coefficient 
between yearly skewness and kurtosis. Figure 3 
shows the histogram of 155 correlation 
coefficients which clearly indicates that in most 
sites, the high correlation exists in yearly γ1 and γ2. 
 
Table 2 Mean and standard deviation of correlation 
coefficients between four moments for 155 sites 
 
 μ-σ μ-γ1 μ-γ2 σ-γ1 σ-γ2 γ1-γ2

mean 0.59 -0.09 -0.06  0.17  0.09 0.91 
s.d. 0.33 0.30 0.26  0.32  0.27 0.05 

 

 
 
Figure 3 Histograms of 155 correlation coefficients between 
yearly skewness and kurtosis 
 
3.2 Regional variations of moment parameters 
 
The mean and the standard deviation of four 
moments for each site are calculated as moment 
parameters indicating the characteristics of 
regional variations of four moments. The 
histograms of the moment parameters for 155 sites 
are then plotted as Figure 4. In some sites the 
standard deviation of four moments is close to 
zero which suggests the identical nature for parent 
distributions, but in most sites the standard 
deviation is significant so that the identical 
hypothesis would be rejected.  
 

  
(a) E(μ)                                   (b) E(σ) 

 

  
(c) E(γ1)                                   (d) E(γ2) 



 

  
(e) σ(μ)                                   (f) σ(σ) 

 

  
(g) σ(γ1)                                   (h) σ(γ2) 

 
Figure 4 Histograms of mean and standard deviation of four 
moments for 155 sites 
 
Table 3 shows the correlation coefficients between 
these 8 moment parameters of 155 sites, from 
which it can be clearly observed that a high 
correlation exists in E(μ) and E(σ), E(γ1) and E(γ2), 
σ(μ) and σ(σ), and σ(γ1) and σ(γ2), which are 
shown in bold type. 
 
Table 3 Correlation coefficients between moment 
parameters for 155 sites 
 

  E(μ) E(σ) E(γ1) E(γ2) σ(μ) σ(σ) σ(γ1) σ(γ2)
E(μ) 1.00  0.92  (0.53) (0.22) 0.40  0.42  0.15 0.05 
E(σ) --  1.00  (0.38) (0.29) 0.37  0.41  (0.03) (0.12) 
E(γ1) --  --  1.00  0.72  (0.18)  (0.17) 0.11 0.18 
E(γ2) --  --  --  1.00  (0.02) (0.04) 0.70 0.74 
σ(μ) --  --  --  --  1.00  0.85  0.15 0.07 
σ(σ) --  --  --  --  --  1.00  0.15 0.08 
σ(γ1) --  --  --  --  --  --  1.00 0.94 
σ(γ2) --  --  --  --  --  --  -- 1.00 

※( . ) : negative value      

 
It is then suggested that when the moment 
parameters are estimated to generate a set of four 
moments for one year’s samples in the Mon de 
Carlo simulation, the characteristics 
aforementioned should be taken into consideration. 
 
4. SIMULATION OF ANNUAL 
MAXIMUM WIND SPEEDS BY THE 
POLYNOMIAL TRANSLATION METHOD 
 
4.1 Polynomial translation method  
 
A procedure for the application of polynomial 
translation method was introduced by Choi and 
Kanda [3]. A set of random variables, Y , whose  
four moments are given, is written in a polynomial 
form with respect to a standard normal random 
variable, X , as 

32 dXcXbXaY                                       (3) 

The coefficients of the polynomial form can be 
obtained from the following equations, 
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11526)( 222  dcbdbYVar                    (5) 

)210524(2)( 22
1  dbdbcY                     (6) 

)281({24)( 22
2 bdbcbdY   

)}2251414812( 222 dcbdd          (7) 
 
In order to solve Equation (4) ~ (7), an algorithm 
like the least square method for nonlinear 
parameters is needed. An available approximation 
was introduced by Edgeworth [6] to reduce the 
number of equations to solve Equation (4) ~ (7) 
simultaneously.  
 
Based on the application of the polynomial 
translation method and the characteristics of four 
moments, a simulation procedure is proposed as 
Figure 5.  
 

Generate 100 sets of four moments
μi, σi, γ1,i, γ2,i  (i = 1 ~100)

Simulation of 30,000 samples for the i-th year by 
polynomial translation method 

with the given i-th set of four moments

Pick up the maximum value of 30,000 samples for 
the i-th year as the i-th annual maximum wind 

speed

100 annual maximum wind speeds are generated 
and plotted on the Gumbel probability paper

 
 
Figure 5 Simulation process for generating 100 annual 
maximum wind speeds 
 
When the i-th set of four moments in step 1 is 
generated, a normal or a lognormal distribution 
with the mean and standard deviation of four 
moments can be applied according to the yearly 
variation of four moments. From Figure 3, since a 
high correlation exists in most sites, the generation 
of 100 sets of skewness and kurtosis are assumed 
as fully correlated based on the reality. 
Considering the randomness of the simulation 
results, simulation processes are carried out for 
several times and then the median values at each 
reduced variate are picked up as the best 
simulation result of 100 annual maximum wind 



speeds corresponding to 100 years of return period 
for design wind speeds. 
 
4.2 Effect of the regional variation of four 
moments 
 
To generate a simulation results, which is fitted 
well to the observed data, the statistical nature of 
the four moments should be estimated properly. 
Table 3 indicates that the regional variations of 
four moments are highly correlated in reality and 
should be considered when generating 100 sets of 
four moments. To explain the effects of the 
regional variations on the extreme value 
distribution, 155 sets of mean and standard 
deviation of four moments are utilized in a 
parametric study.  
 
Moment parameters are regarded as variables and 
vary as “regional mean + N × regional standard 
deviation”. N is an integer varying from negative 
to positive to generate the minimum value and the 
maximum value of moment parameters. However, 
when N is increasing from negative to positive, 
correlation between moment parameters should be 
taken into consideration. For example, when E(μ) 
increases, E(σ) increases at the same time. 
Therefore, there are four cases to investigate the 
effects of moment parameters, which are the pair 
of E(μ) and E(σ), E(γ1) and E(γ2), σ(μ) and σ(σ), 
and σ(γ1) and σ(γ2). Simulation processes are then 
carried out for 11 times and the median values are 
picked up as the best estimates to calculate the 
scale parameter and the location parameter by the 
moment method for simplicity. The probability 
distributions of four moments are assumed normal 
distribution. 
 
The scale parameter and the location parameter are 
plotted with the regional variations of four cases in 
Figure 6. The upper and lower abscissas show the 
variations of correlated moment parameters in 
terms of the regional standard deviation from the 
regional mean, which corresponds to the 
horizontal abscissas shown in Figure 4. 
 
For the variation of scale parameters shown in 
Figure 6, when the values of E(μ) and E(σ), σ(μ) 
and σ(σ), or σ(γ1) and σ(γ2) increase, the scale 
parameter also increases. Among these three cases, 
the case of σ(γ1) and σ(γ2), has rather significant 

effect than other two cases. For the variation of 
location parameters, location parameter increases 
when the values of E(μ) and E(σ) increase. In 
other cases, the variation of location parameters is 
not significant apparently. Once the moment 
parameters are properly estimated, the tail 
characteristics of extreme value distribution can be 
predicted through the examination of the scale and 
location parameters.  
 

 
(a) Case of E(μ) and E(σ) 

 

 
(b) Case of E(γ1) and E(γ2) 

 

 
(c) Case of σ(μ) and σ(σ) 

 

 
(d) Case of σ(γ1) and σ(γ2) 

 
Figure 6 Gumbel parameters with four cases of moment 
parameters 



 
5. STATISTICS OF SIMULATION 
RESULTS OF 155 SITES 
 
5.1 Case studies of simulation results  
 
The simulation procedure is then applied to 155 
sites with the same assumption of statistical nature 
of four moments as the previous sections, fully 
correlated skewness and kurtosis and normal 
distribution of probability distributions for four 
moments. Figure 7 shows the simulation results of 
10 sites. The solid line indicates the median 
estimates of 11 sets of 100 annual maxima and the 
dotted lines indicate the upper and lower 
envelopes. The gray circles represents the 
observed data for specific site. Moment 
parameters of these 10 sites are listed in Table 4.  
 

Table 4 Moment parameters of 10 sites 
 

Site E(μ) E(σ) E(γ1) E(γ2) 
Fukuoka 2.83  2.00  0.94  0.90  
Sumoto 3.20  1.96  1.24  2.94  
Matsumoto 2.25  1.92  1.17  0.81  
Nagoya 2.89  1.88  1.12  1.56  
Aikawa 4.32  3.33  1.31  1.40  
Sapporo 2.51  1.71  0.94  0.88  
Nagoshi 3.15  2.07  1.36  4.80  
Okinoerabujima 5.49  2.78  1.12  3.84  
Ishigakijima 4.51  2.15  1.28  6.32  
Kumijima 3.70  1.96  0.92  5.05  

Site σ(μ) σ(σ) σ(γ1) σ(γ2) 
Fukuoka 0.13  0.12  0.15  0.77  
Sumoto 0.45  0.45  0.28  2.29  
Matsumoto 0.20  0.15  0.12  0.40  
Nagoya 0.15  0.08  0.13  0.97  
Aikawa 0.41  0.30  0.12  0.48  
Sapporo 0.28  0.22  0.14  0.49  
Nagoshi 0.59  0.25  0.45  3.39  
Okinoerabujima 0.21  0.19  0.42  2.90  
Ishigakijima 0.38  0.23  0.65  6.47  
Kumijima 0.18  0.15  0.60  5.30  

 

   
(a) Fukuoka                               (b) Sumoto 

 

      
(c) Matsumoto                         (d) Nagoya 

 

      
(e) Aikawa                               (f) Sapporo 

 

    
(g) Nagoshi                       (h) Okinoerabujima 

 

    
(i) Ishigakijima                      (j) Kumijima 

 
Figure 7 Simulation results and the observed data of 10 sites 
 
From the simulation results, it is clearly observed 
that Fukuoka, Sumoto, Matsumoto, Nagoya, 
Aikawa and Sapporo show fairly good agreements 
with the observed data (E<0.1). However, the 
simulation results of Nagoshi, Okinoerabujima, 
Ishigakijima and Kumijima show rather significant 
error in the tail part of distributions, which may be 
resulted from rather high values of E(γ2) and σ(γ2) 
shown in Table 4. Error values between the 
observed data and the simulation results by 
Equation (2) for these 10 sites are listed in Table 5.  
 



Table 5 Errors between observed data and simulation 
results for 10 sites 

 
Site Error 

Fukuoka 0.1007  
Sumoto 0.0927  
Matsumoto 0.0634  
Nagoya 0.0963  
Aikawa 0.0910  
Sapporo 0.0234  
Nagoshi 0.1396  
Okinoerabujima 0.1372  
Ishigakijima 0.2122  
Kumijima 0.2294  

 
From the effects of moment parameters on the 
Gumbel parameters mentioned in the previous 
section, it is predictable that once larger values of 
E(γ2) and σ(γ2) are estimated, the scale parameter 
becomes large, in other words, the simulation 
results may perform as Frechet model. Figure 8 
shows the relation between the observed annual 
maxima and the observed kurtosis by plotting the 
statistical data of Nagoshi, Okinoerabujima, 
Ishigakijima and Kumijima together. The 
tendency of the distribution shows a proportional 
relationship. The larger value of kurtosis may 
result in larger annual maximum values. 
 

 
 

Figure 8 Distribution of observed annual maxima and yearly 
kurtosis for Nagoshi, Okinoerabujima, Ishigakijima and 

Kumijima 
 
Figure 9 shows the histograms of the observed 
yearly kurtosis of these four sites. From the 
histograms shown in Figure 9, most observed 
kurtosis values are distributed in the lower value 
range, which makes the histograms more like the 
lognormal distribution than the normal distribution. 
Therefore when simulation process is carried out, 
100 sets of higher moments should be generated as 
the lognormal distribution rather than the normal 
distribution. However, it is expected that a 
lognormal distribution has a longer tail than the 
normal distribution and the longer tail 
characteristics will surely result in a larger value 

of kurtosis and the larger value of simulated 
annual maxima. To avoid the extremely large 
value caused by the longer tail of lognormal 
distribution and represent the similar histograms 
of observed kurtosis, the lognormal distribution 
should be truncated by an upper bound. Figure 10 
shows the histograms of generated kurtosis by the 
lognormal distribution and by the lognormal 
distribution truncated by an upper bound. The 
upper bound is assumed to be the maximum value 
of random samples by normal distribution with the 
same number of samples. 
 

    
(a) Nagoshi                       (b) Okinoerabujima 
 

   
(c) Ishigakijima                        (d) Kumijima 

 
Figure 9 Histograms of observed yearly kurtosis 

 

   
(a) Lognormal dist.         (b) Truncated lognormal dist. 

 
Figure 10 Histograms of generated yearly kurtosis in 
Ishigakijima 
 
By applying the truncated lognormal distribution 
to generate 100 sets of higher moments in 
simulation process, simulation results of Nagoshi, 
Okinoerabujima, Ishigakijima and Kumijima are 
shown in Figure 11. The solid line, “N”, represents 



the median estimate of simulation results by 
normal distribution of higher moments. The gray 
line, “L”, represents the simulation results by 
lognormal distribution. The dashed line, “TL”, 
represents the simulation results by truncated 
lognormal distribution. Simulation results by 
truncated lognormal distribution in Nagoshi and 
Okinoerabujima do not show much difference 
from that by normal distribution. However the 
results in Ishigakijima and Kumijima show the 
simulations by truncated lognormal distribution 
largely reduce the errors between the median 
estimates and the observed data. The error is 
reduced from 0.2122 to 0.1124 for Ishigakijima 
and from 0.2294 to 0.1409 for Kumijima. 
 
For extremely large values of estimated E(γ2) and 
σ(γ2), such as Ishigakijima and Kumijima, the 
truncated lognormal distribution of higher 
moments may be an improvement for simulation 
process. However, for those sites with normal 
estimated E(γ2) and σ(γ2), it seems good enough to 
assume the higher moments as normal distribution. 
  

    
(a) Nagoshi                         (b) Okinoerabujima 

 

    
(c) Ishigakijima                        (d) Kumijima 

 
Figure 11 Simulation results different distribution of 
generated kurtosis 
 
5.2 Simulation by short term period of 
statistical data  
 
With good estimation of moment parameters, a 
simulation process based on polynomial 
translation method can provide a good agreement 

to the observed data. Then 5-year period of data 
for the two well-simulated sites, Aikawa and 
Sapporo, are used to estimate the mean of four 
moments and the standard deviation of four 
moments. The simulation is again proceeded to 
examine the agreement with observed statistics. 
Table 6 shows the statistical data of moment 
parameters in each 5 year period. The order of the 
5 year periods is 1961~1965(P1), 1966~1970(P2), 
1971~1975(P3), 1976~1980(P4), 1981~1985(P5), 
1986~1990(P6), 1991~1995(P7), and 
1996~2000(P8), which are listed in Table 6. Table 
7 shows the errors of each period of the simulation 
results to the observed data. 
 
Table 6 Moment parameters of Aikawa and Sapporo 
with 5 year period of statistical data 
 
Aikawa E(μ) E(σ) E(γ1) E(γ2) σ(μ) σ(σ) σ(γ1) σ(γ2)

P1  4.48 3.38 1.27 1.30  0.29  0.25 0.14 0.53 
P2  4.28 3.34 1.24 1.24  0.14  0.20 0.08 0.30 
P3  4.16 3.22 1.31 1.42  0.16  0.13 0.09 0.54 
P4  3.74 3.21 1.42 1.64  0.19  0.16 0.06 0.36 
P5  4.32 3.26 1.28 1.15  0.12  0.13 0.08 0.40 
P6  4.09 3.05 1.40 1.73  0.24  0.21 0.16 0.74 
P7  4.22 3.21 1.41 1.78  0.33  0.31 0.09 0.35 
P8  4.97 3.79 1.22 1.08  0.20  0.19 0.04 0.20 

Sapporo E(μ) E(σ) E(γ1) E(γ2) σ(μ) σ(σ) σ(γ1) σ(γ2)
P1  2.65 1.96 1.03 0.89  0.07  0.02 0.08 0.29 
P2  2.48 1.81 1.01 1.01  0.10  0.07 0.06 0.32 
P3  2.42 1.76 1.05 1.25  0.15  0.06 0.15 0.77 
P4  2.23 1.76 0.96 0.79  0.05  0.05 0.05 0.10 
P5  2.40 1.58 0.93 0.94  0.07  0.11 0.13 0.54 
P6  2.28 1.37 0.75 0.42  0.07  0.05 0.12 0.28 
P7  2.62 1.64 0.84 0.64  0.28  0.22 0.07 0.25 
P8  2.69 1.61 0.87 0.73  0.06  0.03 0.14 0.41 

 
Table 7 Errors of simulation results of Aikawa and 
Sapporo with 5 year period of statistical data 
 

Period Aikawa Sapporo
P1 0.10  0.11  
P2 0.08  0.08  
P3 0.07  0.08  
P4 0.07  0.10  
P5 0.03  0.06  
P6 0.08  0.12  
P7 0.13  0.08  
P8 0.16  0.09  

 
Most periods of Aikawa show fairly agreement 
with the observed data except for the period from 
1996 to 2000. The low values of estimated 
moment parameters from 1996 to 2000 may 
provide an under estimates of annual maximum 
wind speed. Most periods of Sapporo show fairly 
good agreement with the observed annual maxima.  
 
When a construction project is planned, wind 
speed measurements at the site are always 



encouraged. It is expected to take more than 5 to 
10 years for a large project before the beginning of 
construction. Even when only a short period data 
is available, such information as the four moments 
of 10 minute mean wind speeds in certain period 
of years are considered to be meaningful for the 
estimation of annual maximum wind speed 
distribution. Even in cases when the direct 
estimation of the tail of extreme value distribution 
from the simulation based on a short period data 
may not be possible, it is useful as additional 
information to a macro-scale wind hazard map 
such as shown in AIJ load recommendations [2] 
for the determination of design wind speed. 
 
6. CONCLUSIONS 
 
The distributions of observed annual maximum 
wind speeds of 155 meteorological sites have been 
examined to distinguish the types of the extreme 
value distribution models. A common value for an 
acceptable engineering error, 0.05, is assumed to 
distinguish Gumbel model, Frechet and Weibull 
model. Among 155 sites, 122 sites are categorized 
as Gumbel model, 29 sites as Frechet model and 
other 4 sites as Weibull model. Some sites are also 
used to illustrate the fitness of types and compared 
to Fujino [1] to show the different fitting results.  
 
The mean, standard deviation, skewness and 
kurtosis have been examined for 155 sites. The 
variations of four moment parameters are 
generally significant and the non-identical nature 
of the parent distribution is confirmed. When the 
yearly and regional variation of four moments are 
estimated for the simulation of annual maximum 
wind speeds by the polynomial translation method, 
good agreements are observed by the median 
estimate for the annual maximum wind speed 
distribution and the statistical annual maxima. 
Even in some extreme cases with significantly 
large value of standard deviation of higher 
moments, a truncated lognormal distribution for 
generating yearly higher moments can be assumed 
to provide a better agreement of annual maximum 
wind speeds to the observed data than the normal 
distribution.  
 
It is also interesting that once the moment 
parameters are estimated properly, even short-term 
statistical data can fairly provide good agreements 

of simulation results to the observed data. 
Statistical data of Aikawa and Sapporo are utilized 
to show the fairly good agreements to the 
observed annual maximum wind speeds. In most 
cases, the errors between the simulation results 
and the observed data are smaller than 0.1 even 
the short-term period is only taken as 5 years.  
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